China supplier OEM Hydraulic Breaker Parts Cylinder for Msb550 Msb600 Msb700 Msb800 Msb35at Msb900 Msb45at Front Head Back Head vacuum pump design

Product Description

OEM Hydraulic Breaker Parts Cylinder For MSB550 MSB600 MSB700 MSB800 MSB35AT MSB900 MSB45AT Front Head Back Head
 

Product Name MSB550 Hydraulic Front Head
Application MSB Rock Breaker Hammer
Material Crmo
Warranty 3 – 6 months
Suitable Cylinder Front Head
Size Standard Size and Custom Size
Condition 100% New MSB500 Hammer Front Head
Core Components Chisel, Cylinder, Piston, Rod Pin, Seal Kit, Diaphragm

Our Advantages

1)Heating processing technology: Quench and Tempe

2). Surface Treatment: Cold/Hot Zn Plating, Blackening Treatment(Salt Spray Test 48-96 hours), Ni Plating, Cr Plating, Spraying Undercoat, Anti-Rust Paint, Surface Paint, Plastic Paint. Coated Anti-Rust Water, Anti-Rust Oil, etc.

3). Adaptive quartering hammer: SB HB GB TOKU MKB TOY NPK OKADA DMB MSB RHB SG HM BLT MB GT

4). Dimension Inspection: Calipers, Height Gauge, Micrometer Calipers, Inside Caliper Gauge, Angle and R Gauge, 3 coordinates Measuring instrument.

Can Provide More Hydraulic Breaker Models
 

General GBM60, GBM90, GBM1T, GB2T, GB3T, GB4T, GB5T, GB8AT, GB8T, GB8F, GB8AF, GB9F, GB11T, GB14T,
GB220E, GB300E, GB500E, GB170E
Furukawa HB10G, HB20G, HB30G, HB40G, F20, F22, F22A, F22(A+B1+C), F22(A+B1+B2+C+D+E), F30, F35,
F45, HB1G, HB2G, HB3G, HB5G, HB8G, HB10G, HB15G, HB18G, HB50G, HB200, HB300, HB400, HB700,
HB1200, HB1500, F1, F2, F3, F4, F5, F6, F9, F11, F12, F17, F19, F22B2, F22C, F22D, F22E, FS22, FS6, FS12,
FS27, F27, FS37, FS47, F70, F100, FXJ275, FXJ375, FXJ475
Hanwoo RHB301, RHB302, RHB303, RHB304, RHB305, RHB306, RHB309, RHB313, RHB320, RHB321,
RHB322, RHB323V, RHB325, RHB326, RHB328, RHB330, RHB334, RHB340, RHB350
JCB HM1560Q, HM1760Q, HM2180, HM100, HM160, HM165, HM165Q, HM260, HM265, HM265Q,
HM360, HM380, HM385, HM385Q, HM460, HM495, HM495Q, HM550, HM560, HM570, HM670,
HM760, HM770, HM850, HM860Q, HM860, HM960, HM1050, HM1150, HM1260Q, HM1350,
HM1450, HM1560Q, HM1750, HM2350, HM2460Q, HM2950, HM3060Q, HM3850, HM3950, HM4160
Inan CHINAMFG MTB MTB36, MTB45, MTB65, MTB85, MTB120, MTB150, MTB155, MTB170, MTB175,
MTB210, MTB215, MTB250, MTB255, MTB270, MTB275, MTB285, MTB360, MTB365, GA150, GA200, GA300, GA400

We Can Provide Follow Hydraulic Breaker Parts

 

Hammer Parts Main Body Back Head Charging Valve Cylinder Seal Retainer
Socket Plug Piston Adapter Valve Valve Plug Valve Sleeve
Front Head Grease Nipple Rod Pin Stop Pin Rubber Plug Front Head Pin
Ring Bush Thrust Bush Upper Bush Front Cover Tool Bush Lower Bush
Rod Moil Point Chisel Washer Through Bolt Side Rod Hex Nut
Air Check Valve Valve Adjuster Accumulator Accumulator Body Accumulator Cover Socket Bolt
Charging V/V Diaphragm Seal Kit O-Ring Seal Gas Seal Step Seal
Buffer Seal Dust Seal U-Packing Back-up ring Side Bolt Upper Cushion
Down Cushion Tool Set N2 Gas Charging Set N2 Gas Cylinder B-3way valve assy  

 

Factory Workshop

Our factory has 20 years of hydraulic Hammer and fittings parts manufacturing experience, with advanced production and testing equipment, has a strong production capacity and strong storage capacity. All products have been approved by the national authority of the quality certification.

Company Profile

Xihu (West Lake) Dis.an Machiney Equipment Co., Ltd.

HangZhou Xihu (West Lake) Dis.an Machinery Co., Ltd (EB Seals) is a professional supplier for hydraulic breaker parts and excavator parts and OEM hydraulic seals manufacturer. We specialize in completed seal kits and separate seals for hydraulic breaker and excavator more than Ten years in HangZhou, China. 
HangZhou Xihu (West Lake) Dis.an supply almost all brands breakers’ parts like Seal kits, Diaphragm, Piston, Chisel, Wear Bush upper and lower, Rod Pin, Through Bolts, Side Bolts, Control Valve,Front Head, Cylinder, Accumulator, N2 Gas Charging Kit, etc. We insist on high quality parts with genuine and OEM after market replacement parts. 
Specializes in:
–Hydraulic hammer breaker
–Hydraulic breaker parts

Certificate 

Our product have been supplied to over 70 companies of more than 30 countries
Certificate such as CE, ISO, can also be a proof of our quality.

Packing & Shipping 

Delivery Time: 1-3 working days after payment received.

Payment:
We usually use TT.
TT 30% deposit before production and balance 70% before delivery or against B/L copy if see shipment.
100% L/C at sight if you purchase in large quantities. 

After-sales Service: Online
Warranty: 3-6 Months
Type: Front Head
Application: Excavator
Certification: CE, ISO9001: 2000
Condition: New
Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders handle the challenges of precise positioning and control?

Hydraulic cylinders are designed to handle the challenges of precise positioning and control with a combination of engineering principles and advanced control systems. These challenges often arise in applications where accurate and controlled movements are required, such as in industrial automation, construction, and material handling. Here’s a detailed explanation of how hydraulic cylinders overcome these challenges:

1. Fluid Power Control:

– Hydraulic cylinders utilize fluid power control to achieve precise positioning and control. The hydraulic system consists of a hydraulic pump, control valves, and hydraulic fluid. By regulating the flow of hydraulic fluid into and out of the cylinder, operators can control the speed, direction, and force exerted by the cylinder. The fluid power control allows for smooth and accurate movements, enabling precise positioning of the hydraulic cylinder and the attached load.

2. Control Valves:

– Control valves play a crucial role in handling the challenges of precise positioning and control. These valves are responsible for directing the flow of hydraulic fluid within the system. They can be manually operated or electronically controlled. Control valves allow operators to adjust the flow rate of the hydraulic fluid, controlling the speed of the cylinder’s movement. By modulating the flow, operators can achieve fine control over the positioning of the hydraulic cylinder, enabling precise and accurate movements.

3. Proportional Control:

– Hydraulic cylinders can be equipped with proportional control systems, which offer enhanced precision in positioning and control. Proportional control systems utilize electronic feedback and control algorithms to precisely regulate the flow and pressure of the hydraulic fluid. These systems provide accurate and proportional control over the movement of the hydraulic cylinder, allowing for precise positioning at various points along its stroke length. Proportional control enhances the cylinder’s ability to handle complex tasks that require precise movements and control.

4. Position Feedback Sensors:

– To achieve precise positioning, hydraulic cylinders often incorporate position feedback sensors. These sensors provide real-time information about the position of the cylinder’s piston rod. Common types of position feedback sensors include potentiometers, linear variable differential transformers (LVDTs), and magnetostrictive sensors. By continuously monitoring the position, the feedback sensors enable closed-loop control, allowing for accurate positioning and control of the hydraulic cylinder. The feedback information is used to adjust the flow of hydraulic fluid to achieve the desired position accurately.

5. Servo Control Systems:

– Advanced hydraulic systems employ servo control systems to handle the challenges of precise positioning and control. Servo control systems combine electronic control, position feedback sensors, and proportional control valves to achieve high levels of accuracy and responsiveness. The servo control system continuously compares the desired position with the actual position of the hydraulic cylinder and adjusts the flow of hydraulic fluid to minimize any positional error. This closed-loop control mechanism enables the hydraulic cylinder to maintain precise positioning and control, even under varying loads or external disturbances.

6. Integrated Automation:

– Hydraulic cylinders can be integrated into automated systems to achieve precise positioning and control. In such setups, the hydraulic cylinders are controlled by programmable logic controllers (PLCs) or other automation controllers. These controllers receive input signals from various sensors and use pre-programmed logic to command the hydraulic cylinder’s movements. The integration of hydraulic cylinders into automated systems allows for precise and repeatable positioning and control, enabling complex sequences of movements to be executed with high accuracy.

7. Advanced Control Algorithms:

– Advancements in control algorithms have also contributed to the precise positioning and control of hydraulic cylinders. These algorithms, such as PID (Proportional-Integral-Derivative) control, adaptive control, and model-based control, enable sophisticated control strategies to be implemented. These algorithms consider factors such as load variations, system dynamics, and environmental conditions to optimize the control of hydraulic cylinders. By employing advanced control algorithms, hydraulic cylinders can compensate for disturbances and achieve precise positioning and control over a wide range of operating conditions.

In summary, hydraulic cylinders overcome the challenges of precise positioning and control through the use of fluid power control, control valves, proportional control, position feedback sensors, servo control systems, integrated automation, and advanced control algorithms. By combining these elements, hydraulic cylinders can achieve accurate and controlled movements, enabling precise positioning and control in various applications. These capabilities are essential for industries that require high precision and repeatability in their operations, such as industrial automation, robotics, and material handling.

hydraulic cylinder

Handling the Challenges of Minimizing Fluid Leaks and Contamination in Hydraulic Cylinders

Hydraulic cylinders face challenges when it comes to minimizing fluid leaks and contamination, as these issues can impact the performance, reliability, and lifespan of the system. However, there are several measures and design considerations that help address these challenges effectively. Let’s explore how hydraulic cylinders handle the challenges of minimizing fluid leaks and contamination:

  1. Sealing Systems: Hydraulic cylinders employ advanced sealing systems to prevent fluid leaks. These systems typically include various types of seals, such as piston seals, rod seals, and wiper seals. The seals are designed to create a tight and reliable barrier between the moving components of the cylinder and the external environment, minimizing the risk of fluid leakage.
  2. Seal Material Selection: The choice of seal materials is crucial in minimizing fluid leaks and contamination. Hydraulic cylinder manufacturers carefully select seal materials that are compatible with the hydraulic fluid used and resistant to wear, abrasion, and chemical degradation. This ensures the longevity and effectiveness of the seals, reducing the likelihood of leaks or premature seal failure.
  3. Proper Installation and Maintenance: Ensuring proper installation and regular maintenance of hydraulic cylinders is essential for minimizing fluid leaks and contamination. During installation, attention should be given to proper alignment, torqueing of bolts, and adherence to recommended procedures. Regular maintenance includes inspecting seals, replacing worn-out components, and addressing any signs of leakage promptly. Proper maintenance practices help identify and rectify issues before they escalate and cause significant problems.
  4. Contamination Control: Hydraulic cylinders incorporate measures to control contamination and maintain fluid cleanliness. This includes the use of filtration systems, such as in-line filters, to remove particles and contaminants from the hydraulic fluid. Additionally, hydraulic reservoirs often have breathers and desiccant filters to prevent moisture and airborne contaminants from entering the system. By controlling contamination, hydraulic cylinders minimize the risk of damage to internal components and maintain optimal system performance.
  5. Environmental Protection: Hydraulic cylinders may be equipped with protective features to safeguard against external contaminants. For example, bellows or protective boots can be installed to shield the rod and seals from debris, dirt, or moisture present in the operating environment. These protective measures help extend the life of the seals and enhance the overall reliability of the hydraulic cylinder.

In summary, hydraulic cylinders employ sealing systems, appropriate seal materials, proper installation and maintenance practices, contamination control measures, and environmental protection features to handle the challenges of minimizing fluid leaks and contamination. By implementing these measures, manufacturers can ensure reliable and long-lasting hydraulic cylinder performance, minimize the risk of fluid leakage, and maintain the cleanliness of the hydraulic system.

hydraulic cylinder

How do hydraulic cylinders ensure precise and controlled movement in equipment?

Hydraulic cylinders are widely used in various equipment and machinery to provide precise and controlled movement. They utilize hydraulic fluid and mechanical components to achieve accurate positioning, smooth operation, and reliable control. Here’s a detailed explanation of how hydraulic cylinders ensure precise and controlled movement in equipment:

1. Hydraulic Principle:

– Hydraulic cylinders operate based on Pascal’s law, which states that pressure exerted on a fluid is transmitted equally in all directions. The hydraulic fluid is contained within the cylinder, and when pressure is applied, it acts on the piston, generating force. By controlling the pressure and flow of hydraulic fluid, the movement of the cylinder can be precisely regulated, allowing for accurate and controlled motion.

2. Force and Load Management:

– Hydraulic cylinders are designed to handle specific loads and forces. The force generated by the hydraulic cylinder depends on the hydraulic pressure and the surface area of the piston. By adjusting the pressure, the force output can be controlled. This allows for precise management of the load and ensures that the cylinder can handle the required force without exerting excessive or insufficient force. Proper load management contributes to the precise and controlled movement of the equipment.

3. Control Valves:

– Control valves play a crucial role in regulating the flow and direction of hydraulic fluid within the cylinder. These valves allow operators to control the extension and retraction of the cylinder, adjust the speed of movement, and stop or hold the cylinder at any desired position. By manipulating the control valves, precise and controlled movement can be achieved, enabling operators to position equipment accurately and perform specific tasks with precision.

4. Flow Control:

– Hydraulic cylinders incorporate flow control valves to manage the rate of hydraulic fluid flow. These valves control the speed of the cylinder’s extension and retraction, allowing for smooth and controlled movement. By adjusting the flow rate, operators can precisely control the speed of the cylinder, ensuring that it moves at the desired rate without sudden or erratic movements. Flow control contributes to the overall precision and control of the equipment’s movement.

5. Position Sensing:

– To ensure precise movement, hydraulic cylinders can be equipped with position sensing devices such as linear transducers or proximity sensors. These sensors provide feedback on the position of the cylinder, allowing for accurate position control and closed-loop control systems. By continuously monitoring the position, the equipment’s movement can be controlled with high accuracy, enabling precise positioning and operation.

6. Proportional Control:

– Advanced hydraulic systems utilize proportional control technology, which allows for precise and fine-tuned control of the hydraulic cylinder’s movement. Proportional valves, often operated by electronic control systems, provide variable flow rates and pressure adjustments. This technology enables precise control of speed, force, and position, resulting in highly accurate and controlled movement of the equipment.

7. Cushioning and Damping:

– Hydraulic cylinders can incorporate cushioning and damping mechanisms to ensure smooth and controlled movement at the end of the stroke. Cushioning features, such as adjustable cushions or shock absorbers, reduce the impact and decelerate the cylinder before reaching the end of the stroke. This prevents abrupt stops and minimizes vibrations, contributing to precise and controlled movement.

8. Load Compensation:

– Some hydraulic systems utilize load compensation mechanisms to maintain precise movement even when the load varies. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This compensation ensures that the equipment’s movement remains accurate and controlled, regardless of changes in the applied load.

In summary, hydraulic cylinders ensure precise and controlled movement in equipment through the application of hydraulic principles, force and load management, control valves, flow control, position sensing, proportional control, cushioning and damping mechanisms, and load compensation. These features and technologies allow operators to achieve accurate positioning, smooth operation, and reliable control, enabling equipment to perform tasks with precision and efficiency. The combination of hydraulic power and careful design considerations ensures that hydraulic cylinders deliver precise and controlled movement in a wide range of industrial applications.

China supplier OEM Hydraulic Breaker Parts Cylinder for Msb550 Msb600 Msb700 Msb800 Msb35at Msb900 Msb45at Front Head Back Head   vacuum pump design		China supplier OEM Hydraulic Breaker Parts Cylinder for Msb550 Msb600 Msb700 Msb800 Msb35at Msb900 Msb45at Front Head Back Head   vacuum pump design
editor by CX 2023-10-13